Marginal Distributions for Cosmic Variance Limited Cosmic Microwave Background Polarization Data

نویسندگان

  • H. K. Eriksen
  • I. K. Wehus
چکیده

We provide computationally convenient expressions for all marginal distributions of the polarization cosmic microwave background (CMB) power spectrum distribution P (C |σ ), where C = { CTT , C TE , C EE , C BB } denotes the set of ensemble-averaged polarization CMB power spectra, and σ = { σ TT , σ TE , σ EE , σ BB } the set of the realization-specific polarization CMB power spectra. This distribution describes the CMB posterior power spectrum for cosmic variance limited data. The expressions derived here are general, and may be useful in a wide range of applications. Two specific applications are described in this paper. First, we employ the derived distributions within the CMB Gibbs sampling framework and demonstrate a new conditional CMB power spectrum sampling algorithm that allows for different binning schemes for each power spectrum. This is useful because most CMB experiments have very different signal-to-noise ratios for temperature and polarization. Second, we provide new Blackwell–Rao estimators for each of the marginal polarization distributions, which are relevant to power spectrum and likelihood estimation. Because these estimators represent marginals, they are not affected by the exponential behavior of the corresponding joint expression, but converge quickly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marginal Distributions for Cosmic Variance Limited Cmb Polarization Data

We provide computationally convenient expressions for all marginal distributions of the polarization CMB power spectrum distribution P (Cl|σl), where Cl = {CTT l , C l , C l , C l } denotes the set of ensemble averaged polarization CMB power spectra, and σl = {σTT l , σ l , σ l , σ l } the set of the realization specific polarization CMB power spectra. This distribution describes the CMB power ...

متن کامل

Signature of Gravity Waves in Polarization of the Microwave Background

Using spin-weighted decomposition of polarization in the Cosmic Microwave Background (CMB) we show that a particular combination of Stokes Q and U parameters vanishes for primordial fluctuations generated by scalar modes, but does not for those generated by primordial gravity waves. Because of this gravity wave detection is not limited by cosmic variance as in the case of temperature fluctuatio...

متن کامل

Getting Around Cosmic Variance

Cosmic microwave background (CMB) anisotropies probe the primordial density field at the edge of the observable Universe. There is a limiting precision (“cosmic variance”) with which anisotropies can determine the amplitude of primordial mass fluctuations. This arises because the surface of last scatter (SLS) probes only a finite two-dimensional slice of the Universe. Probing other SLSs observe...

متن کامل

Measuring Polarization in Cosmic Microwave Background

We investigate the general strategy of measuring cosmologically induced polarization by analyzing the polarization signature in the small scale limit. Polarization induced by cosmological scalar perturbations leads to a typical anisotropy pattern in the power spectrum, which can best be analyzed in Fourier domain. This allows one to unambiguously distinguish cosmological signal of polarization ...

متن کامل

Measuring Polarization in the Cosmic Microwave Background

Polarization induced by cosmological scalar perturbations leads to a typical anisotropy pattern, which can best be analyzed in Fourier domain. This allows one to unambiguously distinguish cosmological signal of polarization from other foregrounds and systematics, as well as from polarization induced by non-scalar perturbations. The precision with which polarization and cross-correlation power s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008